Steel characteristics and their link to tool wear in hard part turning of transmission components

نویسندگان

  • Niclas Ånmark
  • Thomas Björk
چکیده

This study describes the influence of the steel characteristics of Ca-treated carburising steel grades during hard part turning of synchronising rings in gearbox production. The main focus was on the chemical composition of the non-metallic inclusions in the evaluated workpieces and their effect on the PCBN tool wear. In addition, a Ca-treated carburising steel grade was compared to a standard steel grade. Machining tests were performed at the transmission machining site at Scania in order to evaluate the PCBN cutting tool life as defined by the generated surface roughness during actual production. The progression of flank and crater wear was evaluated by using a scanning electron microscope (SEM) equipped with an energy dispersive X-ray spectrometer (EDS) and a secondary electron (SE) detector. The Ca-treated steel showed a more than doubled tool life than that of the standard steel grade. The superior machinability was linked to the formation of a Ca-enriched slag barrier composed of (Mn,Ca)S and (Ca,Al)(O,S). It is believed that the stability of the protective deposits is essential to minimise diffusion-induced chemical wear of the PCBN tool. Furthermore, the improved machinability corresponds to a reduced tooling cost of 50% during an industrial production of transmission components at the site of Scania. Therefore, to implement the M-steel on a wider range of components would lead to a significantly reduced manufacturing cost per produced component. However, the capability of Ca-treated steels through the complete production route must be further investigated in order to allow for a large scale introduction of Ca-treated steels in the production.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predictions of Tool Wear in Hard Turning of AISI4140 Steel through Artificial Neural Network, Fuzzy Logic and Regression Models

The tool wear is an unavoidable phenomenon when using coated carbide tools during hard turning of hardened steels. This   work focuses on the prediction of tool wear using regression analysis and artificial neural network (ANN).The work piece taken into consideration is AISI4140 steel hardened to 47 HRC. The models are developed from the results of experiments, which are carried out based on De...

متن کامل

Machinability Improvement of 17-4PH Stainless Steel by Cryogenic Cooling

17-4PH stainless steel is a martensitic precipitation hardening stainless steel that provides an outstanding combination of high strength, good corrosion resistance, good mechanical properties, good toughness in both base metal and welds, and short time, low-temperature heat treatments that minimize warpage and scaling. This valuable alloy is widely used in the aerospace, nuclear, chemical, pet...

متن کامل

Machinability Improvement of 17-4PH Stainless Steel by Cryogenic Cooling

17-4PH stainless steel is a martensitic precipitation hardening stainless steel that provides an outstanding combination of high strength, good corrosion resistance, good mechanical properties, good toughness in both base metal and welds, and short time, low-temperature heat treatments that minimize warpage and scaling. This valuable alloy is widely used in the aerospace, nuclear, chemical, pet...

متن کامل

Evaluation of Microstructure and Wear Behavior of Iron-based Hard - facing Coatings on the Mo40 Steel

Mo40 low-alloy steels are mostly used to produce industrial components such as crane wheels which are exposed to abrasive wear. However, during working conditions, their wear resistance is reduced after a while due to its low hardness. With increasing abrasive wear, the dimensions of components decrease and they need to be repaired for surface modification. In this regard, hard overlay coatings...

متن کامل

CBN tool wear in hard turning: a survey on research progresses

Direct machining steel parts at a hardened state, known as hard turning, offers a number of potential benefits over traditional grinding in some applications. In addition, hard turning has several unique process characteristics, e.g., segmented chip formation and microstructural alterations at the machined surfaces, fundamentally different from conventional turning. Hard turning is, therefore, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016